Improving Stochastic Gradient Descent with Feedback
نویسندگان
چکیده
In this paper we propose a simple and efficient method for improving stochastic gradient descent methods by using feedback from the objective function. The method tracks the relative changes in the objective function with a running average, and uses it to adaptively tune the learning rate in stochastic gradient descent. We specifically apply this idea to modify Adam, a popular algorithm for training deep neural networks. We conduct experiments to compare the resulting algorithm, which we call Eve, with state of the art methods used for training deep learning models. We train CNNs for image classification, and RNNs for language modeling and question answering. Our experiments show that Eve outperforms all other algorithms on these benchmark tasks. We also analyze the behavior of the feedback mechanism during the training process.
منابع مشابه
An initial investigation on the use of fractional calculus with neural networks
The widely used backpropagation algorithm based on stochastic gradient descent suffers from typically slow convergence to either local or global minimum error. This backpropagation algorithm bears great resemblance to a classic proportional integral derivative (PID) control system. Fractional calculus shows promise for improving stability and response in feedback control through the use of non-...
متن کاملMproving S Tochastic G Radient D Escent with F Eedback
In this paper we propose a simple and efficient method for improving stochastic gradient descent methods by using feedback from the objective function. The method tracks the relative changes in the objective function with a running average, and uses it to adaptively tune the learning rate in stochastic gradient descent. We specifically apply this idea to modify Adam, a popular algorithm for tra...
متن کاملConditional Accelerated Lazy Stochastic Gradient Descent
In this work we introduce a conditional accelerated lazy stochastic gradient descent algorithm with optimal number of calls to a stochastic first-order oracle and convergence rate O( 1 ε2 ) improving over the projection-free, Online Frank-Wolfe based stochastic gradient descent of Hazan and Kale [2012] with convergence rate O( 1 ε4 ).
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کامل"Oddball SGD": Novelty Driven Stochastic Gradient Descent for Training Deep Neural Networks
Stochastic Gradient Descent (SGD) is arguably the most popular of the machine learning methods applied to training deep neural networks (DNN) today. It has recently been demonstrated that SGD can be statistically biased so that certain elements of the training set are learned more rapidly than others. In this article, we place SGD into a feedback loop whereby the probability of selection is pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.01505 شماره
صفحات -
تاریخ انتشار 2016